capytaine.meshes.geometry module¶
- capytaine.meshes.geometry.clustering(faces: ndarray[tuple[Any, ...], dtype[integer]]) List[ndarray[tuple[Any, ...], dtype[integer]]][source]¶
Clustering of vertices per connected faces.
- Parameters:
faces (NDArray[np.integer]) – Mesh faces. Expecting a numpy array of shape N_faces x N_vertices_per_face.
- Returns:
Groups of connected vertices.
- Return type:
list[NDArray[np.integer]]
- capytaine.meshes.geometry.compute_distance_between_points(a, b)[source]¶
Compute Euclidean distance between two points in n-dimensional space.
- Parameters:
a, b (array_like) – Coordinate arrays (length 3 or more).
- Returns:
Euclidean distance.
- Return type:
float
- capytaine.meshes.geometry.connected_components(mesh)[source]¶
Returns a list of meshes that each corresponds to the a connected component in the original mesh. Assumes the mesh is mostly conformal without duplicate vertices.
- capytaine.meshes.geometry.faces_in_group(faces: ndarray[tuple[Any, ...], dtype[integer]], group: ndarray[tuple[Any, ...], dtype[integer]]) ndarray[tuple[Any, ...], dtype[bool]][source]¶
Identification of faces with vertices within group.
- Parameters:
faces (NDArray[np.integer]) – Mesh faces. Expecting a numpy array of shape N_faces x N_vertices_per_face.
group (NDArray[np.integer]) – Group of connected vertices
- Returns:
Mask of faces containing vertices from the group
- Return type:
NDArray[np.bool]