Source code for capytaine.meshes.clip

# Copyright 2025 Mews Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations
from typing import List, Set, Tuple

import numpy as np


def _get_intersection(
    v1: np.ndarray,
    v2: np.ndarray,
    normal: np.ndarray,
    origin: np.ndarray,
    tol: float = 1e-8,
) -> np.ndarray:
    """Intersect a line segment with a plane.

    Parameters
    ----------
    v1, v2 : numpy.ndarray
        Endpoints of the segment expressed as 3D vectors.
    normal : numpy.ndarray
        Plane normal; does not need to be unit length.
    origin : numpy.ndarray
        Point lying on the plane.
    tol : float, default=1e-8
        Tolerance used to detect parallel segments and clamp the intersection
        parameter to the segment bounds.

    Returns
    -------
    numpy.ndarray
        Intersection point located on the (possibly clamped) segment.

    Raises
    ------
    ValueError
        If the segment is parallel to the plane or the intersection lies
        outside the tolerated segment range.
    """
    v1 = np.asarray(v1, dtype=float)
    v2 = np.asarray(v2, dtype=float)
    n = np.asarray(normal, dtype=float)
    o = np.asarray(origin, dtype=float)

    u = v2 - v1
    denom = float(np.dot(n, u))
    if abs(denom) < tol:
        raise ValueError("Segment is parallel to the plane (no unique intersection).")

    t = float(np.dot(n, (o - v1)) / denom)

    if t < -tol or t > 1.0 + tol:
        raise ValueError(f"Intersection t={t:.6g} lies outside the segment [0,1].")

    t = max(0.0, min(1.0, t))
    return v1 + t * u


[docs] def compute_aspect_ratio(tri_pts: np.ndarray) -> float: """Compute the aspect ratio of a triangle. The aspect ratio is defined as the longest edge length divided by the altitude relative to that edge. Parameters ---------- tri_pts : numpy.ndarray Triangle vertices arranged in a ``(3, 3)`` array. Returns ------- float Aspect ratio ``L / h`` (values greater than or equal to 1). Raises ------ ValueError If the triangle is degenerate and its area approaches zero. """ tri_pts = np.asarray(tri_pts, dtype=float) if tri_pts.shape != (3, 3): raise ValueError("tri_pts must have shape (3,3).") edges = np.array( [ np.linalg.norm(tri_pts[1] - tri_pts[0]), np.linalg.norm(tri_pts[2] - tri_pts[1]), np.linalg.norm(tri_pts[0] - tri_pts[2]), ], dtype=float, ) L = float(np.max(edges)) i = int(np.argmax(edges)) A, B = tri_pts[i], tri_pts[(i + 1) % 3] C = tri_pts[(i + 2) % 3] area = 0.5 * np.linalg.norm(np.cross(B - A, C - A)) if area <= 0.0: raise ValueError("Degenerate triangle: zero area.") h = 2.0 * area / L return L / h
def _signed_distances( verts: list[list[float]], face: list[int], normal: np.ndarray, origin: np.ndarray, ) -> np.ndarray: """Evaluate signed distances of face vertices to a clipping plane. Parameters ---------- verts : list of list of float All mesh vertices. face : list of int Indices of the vertices forming the face. normal : numpy.ndarray Plane normal vector. origin : numpy.ndarray Point belonging to the plane. Returns ------- numpy.ndarray Signed distances for the vertices belonging to ``face``. """ pts = np.asarray([verts[i] for i in face], dtype=float) return (origin - pts) @ normal def _compute_keep_sets( verts: list[list[float]], face: list[int], normal: np.ndarray, origin: np.ndarray, tol: float, ) -> tuple[list[int], set[int], np.ndarray]: """Split vertices of a face between kept and discarded sets. Parameters ---------- verts : list of list of float All mesh vertices. face : list of int Indices forming the face currently being clipped. normal : numpy.ndarray Plane normal vector defining the clipping plane. origin : numpy.ndarray Point on the clipping plane. tol : float Tolerance used to consider vertices inside the kept half-space. Returns ------- list of int Indices of vertices that remain after clipping. set of int Indices of vertices removed by the clipping plane. numpy.ndarray Signed distance of each face vertex to the plane. """ s = _signed_distances(verts, face, normal, origin) mask = s >= -tol keep = [face[i] for i, m in enumerate(mask) if m] unkeep = set(face) - set(keep) return keep, unkeep, s def _compute_edge_intersections( verts: list[list[float]], face: list[int], keep: list[int], normal: np.ndarray, origin: np.ndarray, tol: float, ) -> dict[tuple[int, int], int]: """Intersect face edges with the clipping plane. Parameters ---------- verts : list of list of float Mutable list of mesh vertices; intersection points are appended here. face : list of int Indices of the vertices forming the face being processed. keep : list of int Vertices that remain inside the kept half-space. normal : numpy.ndarray Plane normal vector. origin : numpy.ndarray Point belonging to the plane. tol : float Tolerance for plane intersection checks. Returns ------- dict[tuple[int, int], int] Mapping from directed edges to newly created vertex indices. """ keep_set = set(keep) edges = list(zip(face, face[1:] + face[:1])) cut_edges = [(i, j) for (i, j) in edges if (i in keep_set) ^ (j in keep_set)] edge_inters: dict[tuple[int, int], int] = {} for i, j in cut_edges: ip = _get_intersection( np.array(verts[i]), np.array(verts[j]), normal, origin, tol ) idx = len(verts) verts.append(ip.tolist()) edge_inters[(i, j)] = idx return edge_inters def _build_clipped_boundary( face: list[int], keep: list[int], edge_inters: dict[tuple[int, int], int], ) -> list[int]: """Assemble the boundary indices for a clipped polygon. Parameters ---------- face : list of int Original face indices. keep : list of int Vertices that remain after clipping. edge_inters : dict[tuple[int, int], int] Mapping from edges to newly created intersection vertices. Returns ------- list of int Ordered vertex indices describing the clipped boundary. """ keep_set = set(keep) boundary: list[int] = [] for i, j in zip(face, face[1:] + face[:1]): if i in keep_set: boundary.append(i) if (i, j) in edge_inters: boundary.append(edge_inters[(i, j)]) return boundary
[docs] def clip_faces( vertices: np.ndarray, faces: list[list[int]], normal: np.ndarray, origin: np.ndarray, tol: float = 1e-8, ) -> Tuple[np.ndarray, List[List[int]], np.ndarray]: """Clip faces of a mesh against a plane. The kept half-space is defined by ``(v - origin) · normal >= -tol``. Parameters ---------- vertices : numpy.ndarray Input vertex positions of shape ``(n, 3)``. faces : list of list of int Face connectivity; triangles and quads are supported. normal : numpy.ndarray Normal vector of the clipping plane. origin : numpy.ndarray Point located on the plane. tol : float, default=1e-8 Tolerance for classifying vertices relative to the plane. Returns ------- np.ndarray of floats of shape (new_nb_vertices, 3) The pruned vertex array list of list of int The list of of length new_nb_faces with clipped faces np.ndarray of ints of shape (new_nb_faces,) For each new face, the index of the face it comes from in the input. """ normal = np.asarray(normal, dtype=float) origin = np.asarray(origin, dtype=float) verts: List[List[float]] = vertices.astype(float).tolist() new_faces: List[Tuple[int, List[int]]] = [] # A new face is a tuple storing the index of the parent face in the # original mesh and a list of vertices dropped_vs: Set[int] = set() for i_face, face in enumerate(faces): keep, unkeep, _ = _compute_keep_sets(verts, face, normal, origin, tol) dropped_vs.update(unkeep) if len(keep) == 0: continue # fully outside if len(keep) == len(face): # Face fully inside → keep original (quad or triangle unchanged) new_faces.append((i_face, list(face))) continue edge_inters = _compute_edge_intersections( verts, face, keep, normal, origin, tol ) boundary = _build_clipped_boundary(face, keep, edge_inters) if len(boundary) == 3: new_faces.append((i_face, boundary)) elif len(boundary) == 4: # clipped quad → 2 triangles new_faces.append((i_face, [boundary[0], boundary[1], boundary[2]])) new_faces.append((i_face, [boundary[0], boundary[2], boundary[3]])) elif len(boundary) == 5: # pentagon → 1 triangle + 1 quad tri = [boundary[0], boundary[1], boundary[2]] quad = [boundary[0], boundary[2], boundary[3], boundary[4]] new_faces.append((i_face, tri)) new_faces.append((i_face, quad)) else: # fallback: fan triangulation for k in range(1, len(boundary) - 1): new_faces.append((i_face, [boundary[0], boundary[k], boundary[k + 1]])) if not new_faces: return np.empty((0, 3), dtype=float), [], np.empty((0,), dtype=int) used = {idx for (_, f) in new_faces for idx in f} dropped_vs -= used keep_vs = [i for i in range(len(verts)) if i not in dropped_vs] remap = {old: new for new, old in enumerate(keep_vs)} pruned_verts = np.asarray([verts[i] for i in keep_vs], dtype=float) pruned_faces = [[remap[i] for i in face] for (_, face) in new_faces] parent_of_face = np.array([i_parent_face for (i_parent_face, _) in new_faces]) return pruned_verts, pruned_faces, parent_of_face